POPs vs. Fat: Persistent Organic Pollutant Toxicity Targets and Is Modulated by Adipose Tissue

نویسنده

  • Julia R. Barrett
چکیده

Research over the last decade indicates that adipose (fat) tissue serves as more than an energy depot. The tissue has a dynamic role in maintaining normal carbohydrate and lipid levels as well as in regulating metabolic and other physiologic functions. Persistent organic pollutants (POPs), including certain organochlorine pesticides and numerous industrial chemicals, are highly attracted to lipids and accumulate in adipose tissue. A new review examines how adipose tissue both modulates and serves as a target of POP toxicity and highlights knowledge gaps [EHP 121(2):162–169, La Merrill et al.]. Adipose tissue contains diverse cell types, including adipocytes (fat cells), preadipocytes (immature fat cells), and immune cells. The cells not only respond to various metabolic signals, such as insulin from the pancreas, but also direct the activities of other cell types within the tissue and throughout the body. Adipocytes alone have multiple roles, including lipid storage, production of hormones that regulate appetite and metabolic functions, and secretion of molecules involved in inflammation, which triggers other metabolic and immune system cascades. Adipose tissue readily accumulates POPs, environmental contaminants associated with disruption of the endocrine, reproductive, and immune systems, impaired neurobehavioral development, and cancer. In the short term, adipose tissue sequesters POPs, limiting the exposure of other tissues. However, storage capacity and duration are not uniform and may vary by adipose tissue subtype. These factors complicate the task of predicting bodywide distribution of POPs, exposure of other tissues, and the compounds’ eventual metabolism and excretion. Over the long term, adipose tissue could serve as an internal source for chronic POP exposure, particularly with weight loss. Adipose tissue itself may experience toxic effects, especially if exposure occurs within critical windows of susceptibility, such as during prenatal, early postnatal, or pubertal development. Developmental exposure could redirect gene expression, with effects that may not become apparent until later in life. This mechanism, among other possibilities, could explain how several POPs may act as obesogens, compounds that increase the risk of obesity, itself a risk factor for diabetes, liver and cardiovascular diseases, and cancer. Furthermore, recent studies show that POPs provoke an inflammatory state in adipose tissue, a condition associated with the metabolic side effects of obesity. POPs also appear to have a role in lipotoxicity, the accumulation of lipids in nonadipose tissues, leading to metabolic dysfunction characteristic of cardiovascular disease and heart disease. Ample research points to adipose tissue being a central factor in POP toxicity, but significant knowledge gaps remain with regard to obesogens’ mechanisms of action, POP distribution and dynamics in the body, and the molecular pathways disrupted by or involved in POP toxicity. Human studies, especially prospective longitudinal investigations, are also needed to validate experimental findings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toxicological Function of Adipose Tissue: Focus on Persistent Organic Pollutants

BACKGROUND Adipose tissue (AT) is involved in several physiological functions, including metabolic regulation, energy storage, and endocrine functions. OBJECTIVES In this review we examined the evidence that an additional function of AT is to modulate persistent organic pollutant (POP) toxicity through several mechanisms. METHODS We reviewed the literature on the interaction of AT with POPs...

متن کامل

Exposure to persistent organic pollutants: relationship with abnormal glucose metabolism and visceral adiposity.

OBJECTIVE The contribution of persistent organic pollutants (POPs) to the pandemic of type 2 diabetes mellitus and obesity has been assumed but remains speculative. Our study aimed at investigating the relationship of POP levels with detailed markers of glucose metabolism and body composition. RESEARCH DESIGN AND METHODS Glucose tolerance was determined in a group of normal-weight and obese i...

متن کامل

Persistent organic pollutant levels in human visceral and subcutaneous adipose tissue in obese individuals--depot differences and dysmetabolism implications.

BACKGROUND The role of persistent organic pollutants (POPs) with endocrine disrupting activity in the aetiology of obesity and other metabolic dysfunctions has been recently highlighted. Adipose tissue (AT) is a common site of POPs accumulation where they can induce adverse effects on human health. OBJECTIVES To evaluate the presence of POPs in human visceral (vAT) and subcutaneous (scAT) adi...

متن کامل

Circulating levels of persistent organic pollutants in relation to visceral and subcutaneous adipose tissue by abdominal MRI.

OBJECTIVE We and others have shown relationships between circulating levels of persistent organic pollutants (POPs) and different measures of obesity in both cross-sectional and prospective studies. Since viscerally located fat seems to be the most harmful type, we investigated whether plasma POP levels were more closely related to visceral adipose tissue (VAT) than to subcutaneous adipose tiss...

متن کامل

Persistent Organic Pollutants in Serum and Several Different Fat Compartments in Humans

BACKGROUND Chemicals that store in lipid-rich compartments have the potential for long-term disruption of metabolic and endocrine processes. Given the evidence that persistent organic pollutants (POPs) also alter systemic metabolic, endocrine, and immune system functions, it follows that elevated chemical concentrations in intra-abdominal fat may alter function, through local chemical signaling...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 121  شماره 

صفحات  -

تاریخ انتشار 2013